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Since the European Court of Justice handed down its ruling in the 2014 Costeja case—finding 

that Google and other search engine operators must consider requests made by individuals to 

remove links to websites that contain the requesting party’s personal information—scholars, 

policymakers, legal practitioners, media commentators, and corporate representatives around the 

globe have been vigorously debating the so-called “right to be forgotten.” In the American 

context, many worry that recognizing such a right would undermine the First Amendment’s 

protections for freedom of speech and press. In the European Union, a renamed “right to erasure” 

is expected to become law as part the EU’s General Data Protection Regulation in 2016. The 

right to erasure “prevent[s] the indefinite storage and trade in electronic data, placing limits on 

the duration and purpose for which businesses” can retain such data (Tsesis, 2014, 433) and 

holds that individuals may request the deletion of data when those data have become irrelevant, 

are inaccurate, or cause the individual harm that is not outweighed by a public benefit in 

retaining the data (Koops, 2011). 

 Though most of the discussion surrounding the right to be forgotten and right to erasure 

has focused on the limits and responsibilities of corporate and media data “controllers,” internet 

users’ basic right to remove and have removed content they personally generate—including 

content that they believe may have a detrimental effect on how they are publicly viewed—also 

needs to be taken seriously by scholars conducting internet research. At a minimum, the right to 

be forgotten points to important ethical concerns about research subjects’ privacy, as well as how 

and when a subject’s consent is given and withdrawn. Indeed, if we accept the common 

argument that formal consent need not be obtained from research subjects whom have made their 

content entirely open to the public, the corollary would suggest that we have a responsibility to 

delete their data from our datasets when it is has been removed from the public domain.   
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 And yet to do so could undermine the validity and reliability of social scientific research 

findings, introducing bias and undercutting reproduction and replication efforts. Indeed, 

respecting and observing the right to be forgotten has the potential to hamper ongoing 

movements for greater social science data sharing and transparency. Hoping to increase the 

accessibility of publicly funded research, thwart data falsification, and improve the 

reproducibility and replicability of social science studies, researchers and policymakers have 

vowed to make data even more widely available. Thus, we face a dilemma: Do we protect the 

rights of research subjects by deleting their data when it is no longer in the public domain? Or do 

we safeguard the scientific process and the integrity of our research results—sharing data widely 

and making the right to erasure effectively impracticable? 

 In order to understand and address this dilemma, we first need a better grasp of just how 

serious the implications of honoring the right to erasure would be for social science research. 

That is, we need a clearer understanding of whether and to what extent inferences might be 

biased, and basic scientific replicability undermined, if deleted internet content were indeed 

removed from our datasets. To this end, we examine two Twitter datasets related to the 2014 

Hong Kong protests, often referred to as the “umbrella revolution” or “umbrella movement.” We 

collected these data from Twitter’s historical archive using the same search parameters at two 

points in time—in December 2014, just as the Hong Kong protests were winding down, and one 

year later in December 2015—and we use these datasets to assess the number of tweets deleted, 

as well as how these deletions impact social network metrics derived from the data.  

As a case study, the umbrella movement presents an excellent opportunity to gauge, in 

concrete and practical ways, how the right to erasure might impact a large, growing, and 

influential body of work on the use of social media by social movement activists (cf. Gonzalez-
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Bailon et al, 2011; Hanna, 2013; Harrigan et al, 2012; Tremayne, 2014). The Hong Kong 

protests represent a case in which the subjects being studied are likely to have compelling 

reasons to exercise their right to be forgotten. Though somewhat freer to express their views than 

are those in mainland China, Hong Kong residents have reason to be concerned about state 

censorship and repression and may wish to delete content to avoid monitoring, detention, or 

other forms of state control. The Hong Kong protests therefore represent exactly the type of case 

that should stimulate ethical concerns among internet researchers. 

 In laying out this analysis, we begin by offering a more detailed discussion of the 

umbrella movement, elucidating its context and developments. We then present a brief overview 

of Twitter, its archive, and the rules the company lays out for data use, including data deletion. 

Next, we provide a short description of the methods used to collect our Twitter data before 

moving on to an analysis of the differences between our two datasets and a discussion of the 

implications of these differences for social scientific research.  

 

The Hong Kong Umbrella Movement 

Protest erupted in Hong Kong on September 22, 2014 in reaction to a decision by the National 

People’s Congress (NPC) of the People’s Republic of China regarding electoral reform for the 

Chief Executive in Hong Kong. Currently, the Chief Executive is chosen by an election 

committee.1 For the 2017 elections, the NPC decided that voters should be able to choose from a 

                                                
1 For details of the composition of the election committee, see Annex I of Basic Law at  

http://www.basiclaw.gov.hk/en/basiclawtext/images/basiclaw_full_text_en.pdf, accessed on 

April 16, 2016. 
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list of two or three candidates selected by the election committee and that each nominee would 

be eligible to run if he or she secured the support of more than 50% of that committee.2 Critics 

argued that the election committee overrepresented the interests of Beijing and that without 

democratizing the selection of the election committee itself, the popular vote for the Chief 

Executive constituted mere window dressing. Because the Basic Law of the Hong Kong Special 

Administrative Region expressed the ultimate aim of selecting the Chief Executive by universal 

suffrage (upon nomination by a broadly representative election committee in accordance with 

democratic procedures), protesters called for Beijing to fulfil its promise to implement genuine 

universal suffrage in this process. Supporters of the decision argued that the letter of the law 

leaves room for interpretation and does not specify the timing of gradual electoral reforms. 

During the protests, students and other citizens occupied a central square in Hong Kong, 

often referred to simply as “Central,” as well as a few shopping streets. The occupation and 

protests came to be known as the “umbrella movement” or “umbrella revolution” after the 

umbrellas pro-democracy protesters held up as a protection against tear gas fired by police. 

Yellow ribbons also emerged as a symbol for peace worn by supporters and were seen fluttering 

in the city to condemn the use of tear gas and violence by the Hong Kong police.  

But not everyone in Hong Kong agreed with the umbrella movement and some began 

displaying blue ribbons to support the authorities and the police (the latter of whom wear blue 

uniforms). Blue-ribbon supporters accused student protesters of engaging in violent protests and 

                                                
2 http://news.xinhuanet.com/politics/2014-08/31/c_1112298240.htm, accessed on April 16, 2016; 

http://www.bbc.com/news/world-asia-china-27921954, accessed on April 16, 2016. 
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of severely disrupting social order.3 The blue ribbon counter-movement also took to the streets, 

and numerous clashes took place between yellow and blue ribbon supporters until the occupation 

ended on December 15, 2014. Ultimately, the umbrella movement protests failed to secure 

revisions to the NPC Standing Committee’s electoral procedures. 

While the Chinese government avoided direct contact with the protesters, it kept a close 

eye on how Hong Kong officials handled the protests and sought to direct the response from 

behind closed doors.4 As early as September 28, the Propaganda Department, State Council 

Information Office, and related institutions issued directives to strictly manage interactive media 

and delete all harmful information regarding “occupy central.”5 Words such as “Hong Kong,” 

“barricades,” “occupy central” and “umbrella” were censored on Sina Weibo, a popular Twitter-

like social media platform in mainland China.6 The official line of Chinese media was to cover 

the protests, but focusing on blue-ribbon themes. CCTV focused on the negative consequences 

                                                
3 http://cpc.people.com.cn/n/2014/1003/c87228-25774432.html, accessed on April 16, 2016; 

http://www.rfa.org/mandarin/yataibaodao/gangtai/xl2-10022014102343.html, accessed on April 

16, 2016.  

4 http://www.nytimes.com/2014/10/18/world/asia/china-is-directing-response-to-hong-kong-

protests.html?_r=0, accessed July 24, 2015. http://www.ejinsight.com/20150326-has-leung-

really-secured-beijings-blessing-to-seek-second-term/, accessed July 24, 2015. 

5 China Digital Times, http://chinadigitaltimes.net/2014/09/minitrue-delete-harmful-information-

hong-kong/, accessed July 24, 2015. 

6 http://www.nytimes.com/2014/10/01/world/asia/chinese-web-censors-struggle-with-hong-

kong-protest.html, accessed July 24, 2015. 
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of the protests on the economy and the responsibility of the protesters to end the illegal 

occupations. Elections and protesters’ demands were framed as a foreign intervention in Chinese 

domestic affairs. People’s Daily, the mouthpiece of the central Chinese Communist Party 

claimed that protesters were trained by foreign forces in order to undermine the authority of the 

government.7 

Not surprisingly, then, protesters in Hong Kong predominantly used social platforms 

outside of the so-called “Great Chinese Firewall,” platforms such as Facebook and Twitter, to 

spread information and mobilize support. Our analysis of Twitter therefore provides insights into 

the network connections formed between and among both citizens located in Hong Kong and 

international observers of the movement. 

 

Twitter’s Terms of Service 

Twitter, its tools for data collection, and its terms for third-party data use provide an excellent 

opportunity to explore the implications of the right to be forgotten for social scientific research. 

Twitter maintains an historical archive of all tweets and associated metadata generated since its 

inception in 2006 to which scholars and others may gain (paid) access. However, Twitter 

removes any tweet from the historical archive that has been deleted from the platform for any 

reason. Thus, if a user deletes an individual tweet or closes an entire account, the associated data 

no longer appear in the archive. The same is true if Twitter suspends an account or removes 

                                                
7 http://opinion.people.com.cn/n/2014/0929/c1003-25761887.html, accessed July 24, 2015. 

http://www.nytimes.com/2014/09/01/world/asia/hong-kong-elections.html, accessed July 24, 

2015. See also http://cmp.hku.hk/2014/10/10/36410/, accessed July 24, 2015. 
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spam. Even retweets are removed when the original tweet is deleted. In short, substantial 

amounts of historical Twitter data disappear or “decay” over time.  

Moreover, as part of its terms of service agreement, Twitter requires that third parties 

“respect users’ control and privacy” by deleting any “Content that Twitter reports as deleted or 

expired,” as well as any content that has been changed from public to private.8 As such, Twitter’s 

terms of service require that researchers recognize the right of users to control access to their 

personal data at any point in time, regardless of whether it was once available to the public. This, 

in turn, places a researcher’s data in a constant state of flux. With data perpetually decaying, pure 

reproducibility—whereby one verifies results using the same set of data and following the same 

analytical procedures—is by very definition impossible. And if one is interested in examining the 

same issue or event, it may also impact replicability—or the process of testing one study’s results 

using similar research procedures and conditions, but employing new data. That is, the 

robustness of our findings may be called into question by subsequent studies relying on 

incomplete and potentially biased data. 

 

The Umbrella Movement Twitter Data 

Just how much might we expect the data to vary over time? And how different might the 

conclusions we draw from these data be? In order to answer these questions we have gathered 

two Twitter datasets. Both capture tweets, including retweets, sent between October 1st and 

October 15th, 2014 containing one or more of the following popular hashtags: #HongKong, 

                                                
8 Twitter Developer Policy, https://dev.twitter.com/overview/terms/policy, latest version 

effective May 18, 2015. 
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#OccupyCentral, #UmbrellaRevolution, #OccupyAdmiralty, #HK929, and #HKStudentStrike.9 

The first dataset was obtained by purchasing tweets from Twitter’s historical archive via Sifter, 

one of a handful of third-party applications licensed to search, retrieve, and re-sell archive data.10 

We collected the archive data on December 21, 2014, just after the Hong Kong occupations 

ended. However, the fact that we obtained the data two months after their origination means that 

even this dataset does not represent a complete record of relevant Twitter activity. Indeed, only 

Twitter’s so-called “Firehose” application programming interface (API) offers real-time capture 

of the full stream of public tweets, but, as of writing, access to the Firehose costs around $3,000 

per month and requires substantial technical and infrastructural support, placing it out of reach 

for the vast majority of social scientists. Because we were interested in how many and which 

tweets had been deleted over time, we used the archive dataset as the starting point for the 

second round of data collection. Each tweet contains a unique id number that can be used to 

capture the tweet and its associated metadata from another Twitter API, the REST API, which is 

open to the public and free of charge. Thus, on December 30, 2015, we queried the REST API 

with the full list of tweet ids found in the 2014 data. Any tweets that had not been deleted as of 

December 30, 2015 were thereby recaptured. 

The archive dataset contains 556,412 tweets, while the recapture dataset comprises 

506,356 tweets, or 91.0% of the original data. This finding is in line with previous research 

suggesting that internet data decays by about 10% annually (SalahElDeen, 2012). Thus, it does 

not seem that inordinate amounts of data rapidly disappear, even when related to an inherently 

contentious event such as the Hong Kong umbrella movement. Under many circumstances, we 

                                                
9 The hashtag queries were not case sensitive. 
10 See http://discovertext.com/sifter/. 
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might be satisfied with the recapture dataset. Following the law of large numbers, and because 

we are working with such high-volume data, when 91% of the data remain intact, many basic 

descriptive measures should remain acceptably close. Take, for example, the hashtags found in 

each dataset. The archive contains 24,500 unique hashtags, the recaptured dataset, 23,248, or 

93.0%. The average number of times each hashtag appears in the archive data is 49.88, while 

average frequency is 46.72 in the recaptured data. Indeed, a t-test reveals there is no difference in 

the means between the two datasets. 

 

Bias in Social Network Analysis 

However, few social scientists will be interested in such broad, aggregate findings alone. Indeed, 

a great many scholars are particularly interested in the social networks resulting from social 

media data, including Twitter. Communication researchers studying discourse and framing, for 

instance, frequently analyze hashtag co-occurrence networks. Hashtags are often used to signal 

topics or to otherwise express intent and meaning within a tweet. Take the six hashtags we used 

to collect our own Twitter data. Each conveys, at a minimum, that the tweet is associated with 

the events occurring in Hong Kong. However, when these hashtags appear in the same tweet 

with additional hashtags, we are often able to identify deeper meaning and intent. We might 

expect, for instance, that when #OccupyCentral co-occurs in a tweet with #Democracy, the 

Twitter user sees the movement as a campaign for democratic freedom and likely supports the 

movement’s agenda. On the other hand, a tweet that contains both #OccupyCentral and 

#BlueRibbon likely denies the legitimacy of, and supports the police response to, the Hong Kong 

protests. Thus, hashtag co-occurrence networks might be used to examine the topics discussed 

online during a given event, to analyze how frames spread via social media, to explore how 
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discourse and framing shift over time, and so on. Many scholars also construct and analyze user 

and mentions networks in order to examine digital leadership dynamics within organizations, 

events, or both. Directed user-mention networks reproduce the connections formed when one 

Twitter user mentions another by using the latter’s @username in the body of the tweet. Users 

who frequently mention others often serve as diffusers in a social movement network, helping to 

spread information to or about many others. Those who are frequently mentioned, on the other 

hand, are often key leaders within a movement. Similarly, mention co-occurrence networks (i.e., 

two mentions appear in the same tweet) may help to uncover movement or group leaders, 

including brokers—or those actors who serve as key links between otherwise unconnected, or at 

least distantly connected, actors. 

Unfortunately, however, social network analyses are particularly vulnerable to biases 

generated by missing values. That is, when analyzing social networks, a very large sample may 

still produce considerable biases in our findings. In a study of digitally-gathered social networks, 

Wang, Xhi, McFarland, and Leskovec (2012) investigated the impact of measurement error 

introduced as a result of missing nodes and edges (edges are another term for the connections or 

ties between nodes). Randomly removing ever larger numbers of nodes and edges from these 

digital networks, they found that networks with positively skewed degree distributions often 

tolerate low levels of measurement error. In such networks, a small proportion of nodes have a 

large number of connections, while many have just one connection. As such, if even a small 

number of highly-connected nodes or, similarly, a small number of edges tied to highly-

connected nodes, are removed, the relative position of all the nodes within the network can 

change rather significantly.  
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And this is precisely the type of network we are most likely to observe from Twitter data. 

Because, for example, only a small handful of users tweet at high volume, very few hashtags 

trend, and so on, most Twitter networks are likely to have positively skewed degree distributions. 

Thus, even if Twitter data decays somewhat slowly, just a small amount of missing data may 

result in significantly biased network measures. 

We test this expectation empirically by analyzing several network graphs and metrics 

generated from our two datasets. Each graph corresponds with one of the three commonly 

applied networks described above: hashtag co-occurrence, mention co-occurrence, and directed 

user-mention networks. In the latter case, a person tweeting (the user) “directs” or “sends” a 

connection to each person or entity s/he mentions in a given tweet; the person mentioned 

therefore “receives” this connection. 

For all three network types we compare the number of nodes and edges, as well as three 

common node-level network measures—degree, betweenness, and eigenvector centrality—

across our two datasets. Degree centrality represents a count of the number of ties each node has. 

Thus, in the hashtag co-occurrence network, if #HongKong occurs in tweets alongside 20,000 

other hashtags, its degree centrality measure is 20,000. Note that in our data these are not unique 

observations. If #HongKong appears with #Democracy 2,000 times, each of these co-

occurrences counts as a tie (in social network terminology, we therefore have “weighted edges”). 

In our user-mention directed networks, we measure both in-degree centrality (i.e., the number of 

mentions received) and out-degree centrality (i.e., the number of mentions sent).  

Our second network metric, betweenness centrality, is a measure of brokerage or 

gatekeeping. It measures how often a given node falls along the shortest path between two other 

nodes. Nodes with high betweenness centrality are typically presumed to control access and 
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information within a network. At the very least, they have the potential to significantly disrupt 

the flow of information (Borgatti et al, 2013, 174). 

The third metric, eigenvector centrality, is a variation on degree centrality that takes into 

account a node’s own ties, plus the ties of its neighboring nodes, plus the ties of the neighbors’ 

neighbors, and so on. The reasoning here is that a node is especially influential if those to which 

it is connected are also influential. In other words, a node that has many ties to nodes that are 

otherwise unconnected is much less important than a node that has many ties to nodes that are 

themselves highly connected. Eigenvector centrality is thus a measure of relative influence or 

popularity within a network (Borgatti et al, 2013, 168). 

We are ultimately interested in the robustness of each of these metrics as we move from 

the archive to the recaptured dataset. We evaluate robustness in two key ways: first, by 

calculating the relative difference, or error, between the centrality score observed for a given 

node in the archive and recapture networks; second, by comparing the ordered rankings of nodes 

by each centrality measure. We describe both of these procedures and their results in detail 

below. 

 

Findings 

First, however, let us take a look as some of the basic network characteristics. Table 1 offers a 

set of descriptive statistics for all six network graphs drawn from the archive and recaptured data. 

Across all graphs, the vast majority of nodes and edges are present in the recaptured data. At the 

lowest end, 84.07% of edges were recaptured in the hashtag co-occurrence network, and 88.58% 

of nodes were recaptured in the mentions co-occurrence network. The table also confirms that 

each of the networks derived from the archive data have positively skewed degree distributions. 
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The positive skew is particularly high in the hashtag and user-mention graphs. We therefore 

expect all three networks to be highly susceptible to bias, but the hashtag and user-mention 

networks especially so. 

 
Table 1: Descriptive Statistics for the Archive and Recapture Networks 

 
Nodes Edges Degree 

Skewness Count % 
Recaptured Count % 

Recaptured 

Hashtags Archive 24,500 94.89 1,494,751 84.07 117.88 
Recapture 23,248 1,256,621 114.90 

Mentions Archive 15,301 88.58 207,509 90.36 30.04 
Recapture 13,553 187,504 20.00 

User-
Mention 

Archive 145,728 91.84 586,738 90.76 158.02 
Recapture 133,833 532,486 153.80 

 

 

Network Measurement Error 

The first calculation we use to assess the robustness of our social network metrics is 

measurement error. In statistics, measurement error is understood as the difference between the 

true value of an item and its observed value. Because we do not have the full population of 

tweets meeting our data collection criteria, we cannot assess the centrality measures generated by 

recaptured data against their true values. However, we are able to use the archive data as a near 

approximation. We therefore gauge the relative error generated in the recaptured data by 

calculating the difference between the centrality scores observed in each network for a given 

node and dividing by the node’s score in the archive network. Take, for example, the degree 

centrality scores for #HongKong in the hashtag co-occurrence networks. In the archive network 

graph, this hashtag has 20,595 ties. In the recapture graph, #HongKong has 19,508 ties. Its 

relative error is therefore 0.0528, or ((20,595 – 19,508) / 20,595). In other words, #HongKong’s 

degree centrality score in the recapture network is 5.28% lower than that of the archive.  
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To more fully illustrate these calculations, Table 2 provides a comparison of the degree, 

betweenness, and eigenvector centrality scores, as well as their relative errors, for the top five 

nodes in the archive mentions co-occurrence network. Note that the top mention in terms of both 

degree centrality and betweenness centrality does not appear at all in the recaptured data. For 

those nodes that do not appear, we assign the maximum relative error value observed across the 

networks. For degree centrality, the maximum value is 1.00. No node can have more connections 

in the recaptured graph than it does in the archive, and a completely disconnected node has 

degree 0. However, for betweenness and eigenvector centrality, where missing nodes and edges 

can substantially lower or raise the centrality of other nodes, relative error can be much higher. 

As Table 3—which presents the mean relative error for all nodes in the hashtags, mentions, and 

user-mention networks—shows, the maximum values associated with betweenness centrality are 

particularly high. 
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Table 2: Relative Error, Mentions Co-occurrence Networks 
Degree Centrality 

Mention Score Relative 
Error Archive Recapture 

rightnowio_feed 1072 -- 1.0000 
hkdemonow 699 645 0.0773 
oclphk 572 551 0.0367 
tomgrundy 426 374 0.1221 
scmp_news 377 353 0.0637 

Betweenness Centrality 

Mention 
Score Relative 

Error Archive Recapture 
rightnowio_feed 13,976,953 -- 36,625.1523 
hkdemonow 5,923,100 4,920,030 0.1693 
oclphk 5,636,451 5,794,951 -0.0281 
hk928umbrella 3,881,635 2,989,842 0.2297 
wsj 3,420,049 3,020,590 0.1168 

Eigenvector Centrality 

Mention Score Relative 
Error Archive Recapture 

hkdemonow 1.0000 1.000 0.0000 
williamsjon 0.9915 0.9915 0.0000 
panphil 0.1907 0.1900 0.0041 
france7776 0.0739 0.0738 0.0016 
kemc 0.0636 0.0637 -0.0014 

 
 

Following Wang and colleagues (2012), we presume that the bias introduced by very low 

levels of error, 0.0500 or less, is likely to be “trivial” (407). But above this level, bias is likely to 

have a more substantial impact on one’s findings. As Table 3 shows, the mean relative error is 

above 0.0500 for all but the in-degree centrality scores found when comparing the user-mention 

networks. Degree centrality proves to be the most robust measure for each network category. In 

comparison, betweenness centrality proves exceedingly prone to error, with the mention co-

occurrence networks demonstrating an average relative difference of 0.6207 and the hashtag 

networks a remarkable 4.2908. 
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Table 3: Mean Relative Error 

  Mean Relative 
Error 

Standard 
Deviation Maximum 

Degree 
Centrality 

Hashtags 0.0665 0.2309 1.0000 
Mentions 0.1411 0.3259 1.0000 

User-Mention, 
In-degree 0.0210 0.1297 1.000 

User-Mention, 
Out-degree 0.0805 0.2669 1.0000 

Betweenness 
Centrality 

Hashtags 4.2908 276.4510 36,625.1523 
Mentions 0.6207 21.0771 2,207.8168 

User-Mention 0.1254 15.4421 3,398.5269 

Eigenvector 
Centrality 

Hashtags 0.1412 0.2166 1.0000 
Mentions 0.2000 0.3313 2.9997 

User-Mention 0.0510 0.1959 2.6848 
 
 

Correlation of Centrality Rankings 

These results already raise serious concerns about biases resulting from analysis of the 

recaptured data. However, mean relative error does not provide the whole picture. The 

distribution of these errors across a network also matters. Even when the mean error for all nodes 

is quite low, if that error is distributed unevenly—and particularly if larger errors are associated 

with the most central actors—it is likely to have serious consequences for our findings. When 

interpreting network data, one is usually particularly interested in the most central nodes. Using 

the hashtags data, one might focus on the most prominent hashtags and their connections in order 

to unpack and understand the dominant topics or discourses. Examining the mentions or user-

mentions networks, our interest is likely to be in the most influential actors and their roles in the 

networks. But if we are misidentifying who those actors are due to measurement error, our 

conclusions will be fundamentally flawed. 

 With this in mind, the second method we use to assess the robustness of our social 

network metrics employs Kendall’s tau correlations of rank ordered lists for each of the 
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centrality measures. Kendall’s tau gauges the ordinal association, or the similarity of the rank 

orderings, between two lists. In order to illustrate some of these rank orderings as they appear in 

the Hong Kong data, Table 4 offers a comparison of the top 10 nodes in the mentions co-

occurrence networks for each centrality measure. 

To calculate Kendall’s tau, we take the archive data and the rank orderings that result 

from those data as baseline. As with the relative errors, we use 0.0500 as the cutoff point, 

presuming that correlations of 0.9500 or higher are likely to result in minimal levels of bias. 

Table 5 displays the correlation coefficients for each centrality measure based on lists of the top 

10, 25, 50, 100, 250, 500, and 1000 nodes in each network. 

 In total, only 12 out of 70 (17.14%) correlation coefficients are 0.9500 or higher, and 

most fall substantially below this threshold. Degree centrality is again most robust, with an 

average correlation coefficient across all three networks of 0.8662, and it is particularly robust 

for in-degree rankings in the user-mention network. Indeed, this is the only metric for which the 

mean correlation for all lists—from top 10 to top 1000—is higher than 0.95000. On the other 

hand, with an average coefficient of 0.6858 across the hashtags, mentions, and user-mention 

networks, betweenness centrality is again least robust. 
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Table 4: Top 10 Nodes in the Mentions Co-Occurrence Networks 

Degree Centrality 
Archive Recapture 

Rank Node Score Rank 
(archive) Node Score 

1 rightnowio_feed* 1072 2 hkdemonow 645 
2 hkdemonow 699 3 oclphk 551 
3 oclphk 572 4 tomgrundy 374 
4 tomgrundy 426 5 scmp_news 353 
5 scmp_news 377 6 wsj 294 
6 wsj 323 7 bbcworld 273 
7 bbcworld 291 8 williamsjon 245 
8 williamsjon 257 9 time 231 
9 time 249 11 hk928umbrella 221 

10 krislc 245 10 krislc 217 
Betweenness Centrality 

Archive Recapture 

Rank Node Score Rank 
(archive) Node Score 

1 rightnowio_feed* 13,976,953.11 3 oclphk 5,794,951.49 
2 hkdemonow 5,923,100.21 2 hkdemonow 4,920,030.04 
3 oclphk 5,636,450.54 5 wsj 3,020,590.47 
4 hk928umbrella 3,881,634.82 4 hk928umbrella 2,989,841.99 
5 wsj 3,420,048.63 8 scmp_news 2,772,167.87 
6 tomgrundy 3,190,610.81 6 tomgrundy 2,595,443.44 
7 time 2,946,749.75 7 time 2,294,809.83 
8 scmp_news 2,803,754.42 9 krislc 2,235,635.71 
9 krislc 1,998,297.65 10 nytimes 1,703,180.23 

10 nytimes 1,954,599.23 11 bbcworld 1,703,159.88 
Eigenvector Centrality 

Archive Recapture 

Rank Node Score Rank 
(archive) Node Score 

1 hkdemonow 1.0000 1 hkdemonow 1.0000 
2 williamsjon 0.9915 2 williamsjon 0.9915 
3 panphil 0.1907 3 panphil 0.1900 
4 france7776 0.0739 4 france7776 0.0738 
5 kemc 0.0636 5 kemc 0.0637 
6 zuki_zucchini 0.0607 6 zuki_zucchini 0.0605 
7 raykwong 0.0400 7 raykwong 0.0402 
8 lisahorne 0.0236 8 lisahorne 0.0241 
9 paddycosgrave 0.0180 9 paddycosgrave 0.0182 

10 afp 0.0148 10 afp 0.0152 
*Node does not appear in the recaptured data. 
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Table 5: Kendall’s tau correlations 
Degree Centrality 

 
Hashtags Mentions 

User-Mention 
In-degree Out-degree 

Top 10 1.0000 0.6000 1.0000 0.5111 
Top 25 0.9583 0.7893 0.9933 0.7179 
Top 50 0.9289 0.7911 0.9763 0.7843 
Top 100 0.9303 0.8563 0.9595 0.8619 
Top 250 0.9071 0.8473 0.9133 0.8567 
Top 500 0.9016 0.8610 0.9060 0.8605 
Top 1000 0.8852 0.8727 0.9152 0.8705 
Mean 0.9302 0.8025 0.9519 0.7804 

Betweenness Centrality 
 Hashtags Mentions User-Mention 
Top 10 1.000 0.4222 0.2000 
Top 25 0.9733 0.6000 0.3733 
Top 50 0.9118 0.6424 0.5673 
Top 100 0.8040 0.6962 0.5875 
Top 250 0.8253 0.7291 0.6739 
Top 500 0.7739 0.7066 0.7133 
Top 1000 0.7591 0.7046 0.7373 
Mean 0.8639 0.6430 0.5504 

Eigenvector Centrality 
 Hashtags Mentions User-Mention 
Top 10 0.9111 1.0000 0.3778 
Top 25 0.9333 0.9867 0.5400 
Top 50 0.8173 0.9755 0.6686 
Top 100 0.7515 0.9455 0.7160 
Top 250 0.7723 0.9194 0.7365 
Top 500 0.8375 0.8922 0.7372 
Top 1000 0.8652 0.8735 0.7112 
Mean 0.8412 0.9418 0.6410 

 

Interestingly, the correlation coefficients for eigenvector centrality in the user-mention 

network are very low—ranging from 0.3778 to 0.7365, with an average of 0.6410. This occurs 

despite the fact that the average relative error for user-mention eigenvector centrality was just 
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0.0510. As it turns out, this discrepancy occurs precisely because the error is distributed 

unevenly across the network. The 10 most central nodes have an average relative error of 0.3606. 

The Kendall’s tau results for the hashtag networks are also surprisingly weak. Given the 

fact that we collected our data by querying tweets containing one or more of six hashtags, we 

would expect the Kendall’s tau coefficients to be very high, especially in the small (i.e., top 10, 

top 25) lists. Though the correlations are above the 0.9500 threshold for the top 10 and top 25 

nodes based on degree and betweenness centrality, the hashtags network actually proves much 

less robust than the mentions network for eigenvector centrality, never rising above 0.9333.  

  

Conclusion 

Taken together, these findings suggest that honoring the right to be forgotten in social media 

research is likely to have substantial consequences for social scientists. Should we acknowledge 

that, when obtained without formal consent, we have little right to maintain—and, in particular, 

to share—data once they are removed from the public domain, the inferences drawn from such 

“decayed” data are likely to be considerably biased. 

This seems particularly true if we are using decayed data to conduct social network 

analysis—though the magnitude of the impact does vary by the network metric in question. As 

we have seen, measurement error is extremely high for betweenness centrality measures. A year 

after the Hong Kong protests ended, it is clear that key data regarding brokers and the links they 

provide between concepts and actors in our Twitter networks were lost. Moreover, this extremely 

high degree of error promotes flawed conclusions regarding the relative prominence of various 

hashtags, users, and mentions. Degree centrality, on the other hand, is the most robust network 

metric. The degree of error across all the networks proved relatively low, and the ranking 
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correlations comparatively high. And yet, only the in-degree centrality measures drawn from the 

user-mention networks fall within generally acceptable ranges of error. The last metric, 

eigenvector centrality rests between the first two metrics. Relative error is much lower than that 

associated with betweenness, but is still substantial. Because eigenvector centrality scores are 

based not just on the ties of a given node itself, but on those ties, plus the ties of its neighbors, 

plus the ties of its neighbors’ neighbors and so forth, a small amount of missing data can quickly 

distort our understanding of influence and popularity within a network (Wang et al, 2012, 401). 

The eigenvector centrality results also provide a clear portrait of the impact that the distribution 

of errors can have on our findings. Even when the mean error across all nodes is quite low, if 

larger errors are associated with the most central actors—precisely as occurs in the user-mention 

network—we are likely to reach flawed conclusions regarding which nodes are most central. To 

be sure, looking across the Kendall’s tau results, it is clear that focusing on just the top 10 or 25 

nodes would generally be ill-advised. However, even as we reach deeper into the data—looking 

all the way to the top 1000 nodes—rank correlations remain troublingly low. 

Of course, these findings are based on limited data. We would ideally like to be able to 

compare recaptured data to the full population of tweets meeting our selection criteria. And yet, 

measurement error will always be present to some extent in empirical data. Even had we been 

able to obtain tweets in real time from Twitter’s Firehose API, technical and infrastructural 

perturbations on both the data sending and receiving ends would result in some degree of error. 

Moreover, we believe that the archive data we employ in our study represent a reasonable 

compromise between accessibility (i.e., they were not too costly and did not require vast 

technical and infrastructural resources) and proximity to the population of relevant data. These 
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parameters place such data within reach of other social scientists who might like to explore this 

line of questioning. 

Indeed, we believe this is a line of inquiry worth further pursuit. Our analysis has 

provided a set of initial findings using a single case study—the 2014 Hong Kong umbrella 

movement—and considered the implications for a popular, but still singular, methodology—

social network analysis. Nonetheless, the implications are clear: If we wish to take the right to be 

forgotten seriously, scholars must begin discussions about how to best protect both the rights of 

their research subjects and the integrity of social scientific processes. A full-speed-ahead 

approach to data sharing makes the former impossible, but, conversely, a total embrace of the 

right to be forgotten seems likely to introduce substantial bias and undercut efforts to ensure 

replicability in our research. 
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